Moreover, by a similar reasoning, all the $F_2 \cap Y$ are translates of each other and Y is also a *j*-fold cylinder in directions e_1, \dots, e_j over K_1 . In addition, since each two of $F_1 \cap K$, X and $F_2 \cap Y$ determine each other uniquely, so do K, X and Y.

This completes the proof.

REFERENCES

1. H. Groemer, Über translative Zerlegungen konvexer Körper, Arch. Math. 19 (1968), 445-448.

2. H. Groemer, On translative subdivisions of convex domains, Enseignement Math. (2) 20 (1974), 227-231.

3. B. Grünbaum, Convex Polytopes, Wiley, London-New York-Sydney, 1967.

4. C. T. Long, Addition theorems for sets of integers, Pacific J. Math., 23 (1967), 107-112.

5. S. K. Stein, Factors of some direct products, Duke Math. J., 41 (1974), 537-539.

UNIVERSITY OF CALIFORNIA

DAVIS, CALIFORNIA 95616, USA

Correction to ZF and Boolean Algebra, by J. M. Plotkin, Israel Journal of Mathematics, Vol. 23, Nos. 3-4, 1976, pp. 298-308.

The result of Grant used in Proposition 1.1 is false [2]. But the proposition can be established as follows. It is known that for \tilde{A} , a countable atomless Boolean algebra, Aut (\tilde{A}) is simple and uncountable [1]. A result of Marsh implies that the definable automorphisms are a normal subgroup of Aut (\tilde{A}). The uncountability and simplicity of Aut (\tilde{A}) show that the definable automorphisms of \tilde{A} are trivial. Hence the automorphisms of its generic copy A are trivial. We wish to thank F. D. Hammer for informing us of the papers of Ziegler and Monk.

REFERENCES

1. J. D. Monk, On automorphism groups of denumerable Boolean algebras, Math. Ann. 216 (1975).

2. M. Ziegler, A counterexample in the theory of definable automorphisms, Pacific J. Math. 58 (1975).