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Moreover, by a similar reasoning, all the F2 n Y are translates of each other 
and Y is also a j-fold cylinder in directions el, " ", ej over K1. In addition, since 

each two of FI N K, X and F2 n Y determine each other uniquely, so do K, X 

and Y. 

This completes the proof. 
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Correction to ZF and Boolean Algebra, by J. M. Plotkin, Israel Journal of 

Mathematics, Vol. 23, Nos. 3-4, 1976, pp. 298-308. 

The result of Grant used in Proposition 1.1 is false [2]. But the proposition can 

be established as follows. It is known that for A, a countable atomless Boolean 

algebra, Aut (,~) is simple and uncountable [1]. A result of Marsh implies that 

the definable automorphisms are a normal subgroup of Aut (A). The uncounta- 

bility and simplicity of Aut (,4) show that the definable automorphisms of ,4 are 

trivial. Hence the automorphisms of its generic copy A are trivial. We wish to 

thank F. D. Hammer for informing us of the papers of Ziegler and Monk. 
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