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Moreover, by a similar reasoning, all the F>, N Y are translates of each other
and Y is also a j-fold cylinder in directions ey, - - -, ¢; over K,. In addition, since
each two of FiN K, X and F,N Y determine each other uniquely, so do K, X
and Y.

This completes the proof.
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Correction to ZF and Boolean Algebra, by J. M. Plotkin, Israel Journal of
Mathematics, Vol. 23, Nos. 3-4, 1976, pp. 298-308.

The result of Grant used in Proposition 1.1 is false [2]. But the proposition can
be established as follows. It is known that for A, a countable atomless Boolean
algebra, Aut (A) is simple and uncountable [1]. A result of Marsh implies that
the definable automorphisms are a normal subgroup of Aut(A ). The uncounta-
bility and simplicity of Aut (A ) show that the definable automorphisms of A are
trivial. Hence the automorphisms of its generic copy A are trivial. We wish to
thank F. D. Hammer for informing us of the papers of Ziegler and Monk.
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